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Motivating experiment

µ̂1, µ̂2 –
effective viscosities.

I. Aronson, A. Sokolov (experiments): µ̂1 � µ̂2.

µ̂1 can be 5-7 times smaller than µ̂2 for moderate
concentrations. Possible: µ̂1 < µ.

Sharp contrast with passive inclusions:
rigid inclusions always increase effective viscosity.

Model (well-posed)

u(x) – velocity;
p(x) – pressure;
µ – viscosity.

{

µ4u = ∇p

div(u) = 0
in ΩF = Ω \ B.

Rigid swimmer: v(x) = v
C

+ (x − x
C

) × ω,

On “forward” (head) part: Fluid sticks to the swimmer

u(x) = v(x) x ∈ Γ
H

, no-slip.

On “back” (propulsion) part:

{

(u(x) − v(x)) · n = 0 no penetration, slip is allowed,

τσ(u, p)n – given partially prescribed traction.

τ – unit tangent to the surface, τ · d ≤ 0.
fp :=

∫

ΓP
τσ(u, p)n dx – propulsion strength of swimmer.

Balance conditions for the whole swimmer:
∫

Γ
H

∪Γ
P

σ(u, p)n dx = 0 Balance of forces
∫

Γ
H

∪Γ
P

(x − x
C

) × σ(u, p)n dx = 0 Balance of torque.

Dynamics of the swimmer: ẋ
C

= v
C

ḋ
i = d

i × ω.

Measuring shear viscosity

Shear viscosity (homog. fluid):

µ̄ := H
L

(FT −FB)·e1

2v
= µ.

Inhom. fluid (suspension) ⇒
FT (t), FB(t) ⇒ µ̄ = µ̄(t)
– instant. apparent viscosity
(material & state property).
Effective viscosity:

µ̂ := lim
T→∞

1

T

∫ T

0
µ̄(t) dt,

(material property).

Small concentrations (no swimmer-swimmer interactions)

Dilute assumptions:

(i) swimmers interact only with the background flow (swimmer-
swimmer interactions can be ignored);

(ii) only orientations (not positions) of swimmers play role in the
effective viscosity;

Dilute assumptions ⇒ analyze one swimmer.
Many swimmers = sum of effects due to individual swimmers.

THM: Dilute assumption ⇒ µ̂(fp) = µ̂(0), no dependance on fp.

Remark: Adding rotational noise to the model breaks symme-
try in p(θ). Leads to preferential alignment of swimmers (Leal
& Hinch): µ̂(fp) < µ̂(0) for fp > 0 (Haines, Karpeev, Aronson,
Berlyand).

Key steps:

1. Rotational velocity of swimmer ω(θ, fp) = ω(θ) is even:
ω(θ) = ω(−θ).

2. Density function p(θ), time spent around angle θ, is even:
p(θ) = p(−θ).

3. Contribution η̄(θ, fp) := µ̄(θ, fp) − µ̄(θ, 0) to instanta-
neous apparent viscosity µ̄(θ, fp) due to self propulsion is
odd: η̄(−θ, fp) = −η̄(θ, fp).

4. Overall contribution to effective viscosity from self-
propulsion:

η̂(fp) := µ̂(fp) − µ̂(0) =

∫ π

−π

p(θ)η̄(θ) dθ = 0.

Moderate concentrations: numerical solution scheme (all interactions)

Key step: solution of Stokes PDE.
Key tool: Mimetic Finite Difference
(MFD) [2] ≈ generalization of Finite
Element to general polygonal meshes.

Sample mesh:
Advantages of MFD: Performance & flexibility of use and ex-
tension to time dependent Stokes, Navier-Stokes.
Some computational issues:

• optimal time step 4t:

– too large 4t → inaccurate dynamics → inaccurate
measurement to effective viscosity.

– too small 4t → too short observation time → in-
accurate measurement to effective viscosity.

• collisions of swimmers (due to finite 4t).

Moderate concentrations: results

Effective viscosity µ̂(fp) as a function of fp:
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Tendency for alignment (pattern formation) is ob-
served even in the presence of background flow:

Pushers (fp > 0,
effective propulsion
force behind center)
tend to swim side-
by-side.

Pullers (fp < 0,
effective propulsion
force in front of cen-
ter) tend to swim
head-to-tail forming
train-like structures.

Why reduction of viscosity?

Hydrodynamic interactions ∼ rotational noise:
break up of the symmetry in p(θ) – peak in the density p(θ)
shifts (preferential alignment).

Preferred direction – swimmer creates flow that aids (fp > 0)
the background shear flow → reduction of viscosity.

Funding

DOE Office of Science Advanced Scientific Computing Research

(ASCR) Program in Applied Mathematics Research.

DOE grant DE-FG02-08ER25862 and NSF grant DMS-0708324.

References

[1] Effective shear viscosity and dynamics of suspensions of micro-
swimmers at small and moderate concentrations, V. Gyrya,
K. Lipnikov, I. Aronson, L. Berlyand, submitted (2009).

[2] Mimetic finite difference method for the Stokes problem on polyg-
onal meshes, L. Beirao da Veiga, V. Gyrya, K. Lipnikov, G.
Manzini, JCP, vol. 228, no. 19, pp. 7215-7232 (2009).

[3] High-order mimetic finite difference method for diffusion prob-
lems on polygonal meshes, V. Gyrya, K. Lipnikov, JCP, vol.
227, no. 20, pp. 8841-8854 (2008).

[4] A model of hydrodynamic interaction between swimming bac-
teria, V. Gyrya, L. Berlyand, I. Aronson, and D. Karpeev,
BMB, published online (2009).


